ULTRASHORT PULSED LASER PROCESSING AT 1 KILOWATT USING A FLEXIBLE MULTI BEAM APPROACH

Forum "Intelligent Laser-Based Manufacturing in Europe" Laser WORLD of PHOTONICS 2019, Munich

Dr. Johannes Finger (Fraunhofer ILT)

AGENDA

- 1 The MultiFlex Project
- 2 MultiFlex in the context of Industry 4.0 and Digitalization

AGENDA

- **1** The MultiFlex Project
- 2 MultiFlex in the context of Industry 4.0 and Digitalization

The MultiFlex Project

OBJECTIVE:

High Speed Ultrashort Pulsed Laser Processing Using Kilowatt Laser Power and Individually Modulated Multi-Beams

Why **ultrashort** pulses? Why **kilowatt** average power? Why individually modulated **Multi-Beams**?

Why ultrashort pulses?

Ultrafast Lasers

- Pulse duration < 10 ps → MutliFlex: < 1 ps</p>
- Negligible thermal load
- Highly precise
- Nearly all kind of materials
- Non-contact processing
- Wear-free tool
- Truly digital process

Source: ILT

Applications of ultrafast laser structuring

Structuring of functional surfaces

- Self cleaning surfaces
- Friction reduction
- Anti-Icing
- Antibacterial surfaces
- Absorption enhancement

Structuring of molds and tools

Source: ILT

- Design structures
- Haptic
- Illumination light guides
- Micro cavities

Structuring for embossing and printing applications

Source: ILT

- Printed electronics
- Security features
- Micro embossing
- Printing

Focus of MultiFlex

Use Case: Light Guiding by Micro Injection moulded Lens Arrays

Homogenous illumination by scattering within light guide Source: ILT

Structured tool surface

Source: ILT

Digital dashboard Source: wikimedia.org

Light guides in PMMA Source: ILT

Micro lenses Source: ILT

Why kilowatt average power?

- Typically ablation rates some mm³/min for ultrafast laser processing
- Quality excellent but productivity much too small for many industrial applications
- Productivity determined by average power
- → Power-scaling to the kW-range
- $P = E_P \cdot f_{rep}$
 - Scaling by pulse energy
 - Scaling by repetition rate

Why individually modulated Multi-Beams? Comparing Scaling Strategies

APPROACH:	FAST BEAM DEFLECTION	MULTI-BEAM-OPTIC
Repetition Rate	:: High	Moderate
Pulse Energies:	low	High
Duty Cycle:	Low, dependent on Structure	High
Toolpaths:	Lines, One Direction	Arbitrary
5-Axis-Processing	g: No	Restricted
Accuracy	High (with corrections)	Limited by field distortions
Possible structure types	Arbitrary structures	Periodic structures
Scalability	Limited by Oscillator Frequency (combination with multi beam needed for further upscaling)	Limited by optical system
Development of Multi-Beam-Structuring for 1 kW average power and arbitrary, non-periodic structures with high accuracy		

Why individually modulated Multi-Beams?

- Multi-Beam approach unlimited scalability in principle
- Restricted by field distortions
- Only periodic structures
- \rightarrow Overcoming the restrictions by flexible multi beam approach

PHOTONICS PHOTONICS PUBLIC PRIVATE PARTNERSHIP

Source: ILT

Concept and Idea: The "Laser Matrix Printer"

- FPGA-based control scheme
- Large spot distance (~5mm) to avoid thermal interactions
- Femtoseconds for high throughput, high quality and high reproducibility
- Pulse Bursts for increased surface quality
- Scan field correction for each beamlet
- Encoder-based control scheme/arbitrary scanning
- Use of pulse on demand/free-trigger

The Consortium

PHOTON

AGENDA

- 1 The MultiFlex Project
- 2 MultiFlex in the context of Industry 4.0 and Digitalization

MultiFlex: Data for manufacturing process

- Laserablation \rightarrow 2.5 D structures
- Bitmap (16 bit) as suitable data format
- Pixelsize determined by pulse distance
- Use-Case:
 - 300 mm x 210 mm
 - Hatch Distance ~ 8 μm
- → 37500 pixel x 31250 pixel (~2.5 GB)

MultiFlex: Control system

- FPGA based control scheme
 - Sniffing and interpolating galvo positions
 - Control of single pulses with laser oscillator frequency (~50 MHz)
 - Control of each 64 modulators
- Pulse on demand
 - Efficient use of laser power
 - Distance based pulse triggering

MultiFlex: New process parameters and conditions

- Productivity increase up to x100
- 10 times higher laser power
- 20 times faster control system
- New dimension of flexibility for Multi-beam processing
- New, large area applications possible
- Highest degree of freedom pixel by pixel ablation
- Efficient use of available laser power
- Replacing environmental problematic technologies

MultiFlex: Process and Machine Monitoring

- Monitoring of
 - Machine condition
 - Condition of optical system
 - Process
- PLC/PC
 - Status, "Slow" signals
- FPGA
 - Real time signals
 - Process Monitoring
 - \rightarrow ~ 50 Gigabyte per hour

MultiFlex: Use of Artificial Intelligence

- Algorithms for data processing
- Correlation of measured data and processing result
- Analytical for obvious correlations
 - Spot uniformity
 - Laser power
- Mapping of acquired data and galvo positions
- Identifying significant parameters
- Use of Machine Learning algorithms and neural networks for "hidden" and complex correlations

MultiFlex and Digitalization - What would be beneficial?

- Exchange of suitable data processing for laser-based manufacturing with other projects
- Easy to integrate collection of sensors with open software interfaces
- Toolkit for data acquisition and analysis developed for the field of laser-based manufacturing

Where to find us?

- Webpage: <u>www.multiflex-project.eu</u>
- Twitter: @MultiFlex_EU
- LinkedIn: MultiFlex / Group

Coordinator Contact:

Dr.-Ing. Johannes-Thomas Finger Fraunhofer ILT Steinbachstr. 15 52074 Aachen Germany

johannes.finger@ilt.fraunhofer.de

Phone: +49 241 8906 472

